МНОГОЛУЧЕВЫЕ АНТЕННЫ: РЕШЕНИЯ КОМПАНИИ ЕТІ

С.Дингес, к.т.н., **Е.Хасьянова** ehasyanova@gmail.com

Для улучшения функционирования систем радиосвязи вместо всенаправленных антенн малого радиуса действия с малым усилением применяют остронаправленные антенны большого радиуса действия. Такие антенны позволяют увеличить число абонентов, находящихся в одном направлении, но не дают возможности использовать систему на других направлениях. Эту проблему решают многолучевые антенны. Они позволяют получить суммарное круговое покрытие как у всенаправленной антенны, но с существенным увеличением количества абонентов во всех направлениях. О разработке и примерах многолучевых антенн рассказывается в статье.

МНОГОЛУЧЕВАЯ АНТЕННА – УСТРОЙСТВО И ПРЕИМУЩЕСТВА

Многолучевая антенна – это антенна, имеющая многолепестковую диаграмму направленности. Обычно у нее несколько независимых входов/ выходов, каждому из которых соответствует своя диаграмма направленности – свой луч. В многолучевой антенне выполняется параллельный обзор пространства, т.е. одновременно формируется множество лучей, расположенных дискретно каждый в своем секторе сканирования. Сигналы, поступающие на антенну с различных направлений, могут быть разделены и переданы на различные порты антенны. Такое же пространственное разделение сигналов можно реализовать и в обратном канале связи.

Методы пространственного разделения абонентов, применяемые для оптимального использования доступного частотного ресурса большинством поставщиков услуг беспроводных систем связи, обычно ограничиваются тремя секторами в 360-градусной зоне покрытия. Многолучевая антенна позволяет увеличить число секторов, например, до 48. Поскольку в многолучевых системах можно повторно использовать доступные частоты в разных секторах, число абонентов

существенно увеличивается. При этом на значительное расстояние и в различных направлениях могут передаваться данные, речь и видеосигналы без ретрансляционных станций. В результате уменьшаются эксплуатационные расходы и существенно увеличиваются емкость, надежность и качество работы сети.

Основными компонентами многолучевой антенной системы являются собственно антенна и устройство формирования луча [1, 2]. Антенна состоит из большого количества антенных элементов, например диполей или патч-антенн, объединенных в антенную решетку. Устройство формирования луча обеспечивает необходимую фазу РЧ-сигналов, подводимых ко всем элементам антенны для того, чтобы сформировать лучи в различных направлениях. Для реализации требуемых характеристик многолучевой антенной системы одинаково важны электрические и конструктивные параметры обоих компонентов.

АНТЕННОЕ ОБОРУДОВАНИЕ КОМПАНИИ ЕТІ

Поставщиком антенного оборудования, разработанного в соответствии с вышеизложенными принципами, является компания Electromagnetic Technologies Industries

(ETI, www.etiworld.com), специализирующаяся на разработке и производстве современных узкополосных и широкополосных РЧ- и СВЧ-компонентов и подсистем [3]. Официальный представитель компании ETI в России - ООО "Радиокомп".

При разработке многолучевых антенных систем (рис.1) компания ЕТІ провела комплексные исследования, позволившие оптимизировать их параметры. Рассмотрим кратко процесс создания антенных систем ETI.

Разработка антенны

Антенна состоит из элементарных планарных антенных элементов (патч-антенны, или патчэлементы) – прямоугольных излучателей с одной точкой питания, упорядоченных в антенной решетке. Патч-элементы выполняются с использованием микрополосковой высокочастотной технологии печатного монтажа. Их достоинствами являются низкая стоимость производства, простота монтажа, высокая надежность, малые габариты и масса.

Антенна проектируется как линейная фазированная антенная решетка с равным межэлементным разнесением и прогрессивным сдвигом фаз [1, 2, 4]. Сигнал на каждый элемент антенны поступает с различной амплитудой и фазой в соответствии с требуемым направлением суммарного электромагнитного излучения. Поля излучающих элементов с различными фазами объединяются в дальней зоне антенны, формируя узкий луч.

Расстояние между элементами поддерживается равным половине длины волны на центральной рабочей частоте. Точка питания выбирается приблизительно в центре патч-элемента, точное ее положение определяется на основе анализа экспериментальных измерений отражения по входу, выполненных с помощью высокочастотного векторного анализатора цепей (VNA).

Для улучшения характеристик антенны точка питания каждого патч-элемента была выбрана чуть выше центральной точки. Также тщательно выбрана форма каждого элементарного излучателя, чтобы в рабочем частотном диапазоне достичь коэффициента стоячей волны по напряжению меньше 1,50:1. Разработанная патч-антенна обладает следующими конструктивными параметрами:

- резонансная частота 3,7 ГГц;
- толщина подложки (основания) 1 мм;
- диэлектрическая постоянная подложки 2,2;
- длина патч-антенны 4 см;
- ширина патч-антенны 1,8 см;
- поляризация вертикальная.

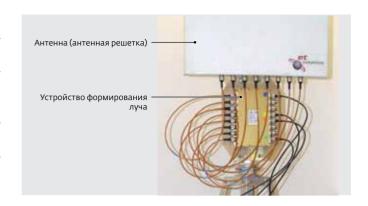
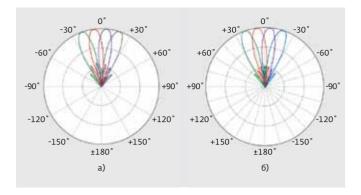


Рис.1. Многолучевая (восьмилучевая) антенная система


Вся совокупность патч-элементов расположена линейно на едином диэлектрическом основании и имеет азимутальную ширину луча 15 градусов и вертикальную - 7 градусов. Конструкция четырехлучевой антенны требует использования минимум четырех решеток (рядов) патчэлементов [4]. Усиление антенны составляет 26 дБ, коэффициент обратного излучения - более 30 дБ, уровень боковых лепестков - на 20 дБ ниже уровня главного лепестка.

Разработка устройства формирования луча

Устройство формирования луча - достаточно сложный функциональный узел, состоящий из пассивных СВЧ-элементов. Он обеспечивает требуемые фазы и амплитуды сигналов, подаваемых с системы приемопередатчиков на антенну. Устройство формирует лучи антенных решеток и устанавливает их направления электронным способом, без механического воздействия на элементы антенной системы.

Такие электронно-управляемые схемы формирования луча могут быть разработаны при использовании компьютерного анализа антенных элементов и сопутствующих электронных компонентов во временной или частотной областях. При разработке схемы формирования луча рассматриваемой многолучевой антенной системы ETI для широкополосных применений был использован анализ в частотной области [5-8].

Чтобы свести к минимуму потери РЧ-сигнала и стабилизировать его фазу и амплитуду, схема формирования луча располагается рядом с антенным блоком или интегрируется с ним. В описываемом примере устройство формирования луча было размещено около антенны, и для поддержания в решетке необходимых фазовых соотношений при подключении использованы согласованные по фазе кабели.

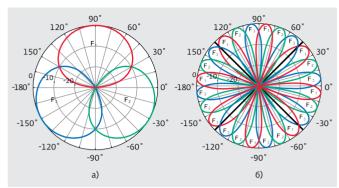


Рис.2. Полученная экспериментально (а) и сгенерированная посредством программного моделирования (б) диаграммы направленности четырехлучевой антенной системы

В рабочем диапазоне частот эти кабели дают согласованную точность по фазе (разбаланс) $\pm 1^\circ$. Каждый 900-мм отрезок кабеля вносит потери меньше 0,5 дБ.

Для получения необходимых фазовых соотношений при формировании четырех лучей в устройство формирования луча были включены различные пассивные компоненты: комбинация квадратурных ответвителей, гибридные СВЧ-компоненты, фазовращатели и др.

Чтобы экспериментально подтвердить эффективность используемого подхода к проектированию антенной системы в целом, компанией ETI было

Рис.3. Секторизация сайтов с помощью масштабируемых антенн: а) типовой трехсекторный сайт (используются частотные каналы F_1 , F_2 , F_3); б) диаграммы 6-лучевой антенны (используются частотные каналы F_1 , F_2 , F_3 . Коэффициент повторного использования частоты – 3:1)

разработано устройство формирования луча четырехлучевой антенны для диапазона 3,4–3,6 ГГц. Входы устройства рассчитаны на работу с четырьмя различными центральными частотами: 3,440; 3,480; 3,520 и 3,580 ГГц при ширине канала 7 МГц.

Диаграмма направленности излучения разработанной четырехлучевой антенной системы была измерена в открытой среде в частотном диапазоне 3,4-3,6 ГГц. Входная РЧ-мощность была равна +5 дБм. Мощность полученного сигнала измерялась с шагом 1° на окружности радиусом 200 м, в центре которой находилась антенна.

Таблица 1. Пассивные устройства формирования луча

Модель	Диапазон частот, ГГц	Число антенных элементов	Разбаланс амплитуд, дБ	Разбаланс фаз, град.
B-1.25G-24	0,5-2	4	±0,5	±5
B-3.5G-22	3,4-3,6	2	±0,4	±5
B-3.5G-44	3,4-3,6	4	±0,5	±5
B-3.5G-88	3,4-3,6	8	±0,5	±8
B-3.5G-1616	3,4-3,6	16	±0,8	±8
B-5.6G-22	5,4-5,8	2	±0,5	±5
B-5.6G-44	5,4-5,8	4	±0,5	±5
B-5.6G-88	5,4-5,8	8	±0,5	±5
B-118-24	1–18	4	±0,8	±10
B-218-48	2-18	8	±0,8	±10
B-14-44	1-4	4	±0,6	±8

Таблица 2. Многолучевые антенны

Модель	4ET35216	4ET354165	4ET35816	4ET351216
Число лучей	2	4	8	12
Коэффициент усиления, дБ	22	26	28	30
Углы максимумов излучения в лучах, град.	±30	±12; ±37	±5,3; ±16; ±27,3; ±39,7	±3,5; ±10; ±17; ±24,5; ±32; ±40,25
Ширина луча, град.	60	22,5	11,25	7,5
Общая ширина диаграммы направленно- сти, град.	90 или 120	90 или 120	90 или 120	90 или 120

Было проведено сравнение двух диаграмм направленности - полученной экспериментально и сгенерированной посредством программного моделирования в среде MATLAB. Результаты измерений хорошо совпали с теоретическими данными (рис.2).

Анализ изготовленной четырехлучевой антенной системы показывает, что при использовании

шести таких антенных систем может быть обеспечено полное 360-градусное покрытие для сайтов беспроводной связи.

^{*} Сайт – место размещения базовой станции, антенно-фидерного и необходимого сопутствующего оборудования, необходимого для создания соты в системе мобильной связи или радиодоступа.

Таблица 3. Антенны с двойной поляризацией

Модель	6ET2P24	6ET2P35	6ET2P56	6ET2P105
Диапазон частот, ГГц	2,2-2,9	3,1-3,7	5,2-5,9	10,2-10,8
Габариты, см	127×117×6,4	92×79×6,4	61×53×6,4	33×28×5,1
Масса, кг	13,6	9,5	5,9	1,4

Серийные устройства

Проведенные исследовательские работы позволили компании ЕТІ создать ряд пассивных устройств формирования луча (табл.1) и антенных блоков. Так, для сетей WiMAX разработаны двух-, четырех-, восьми- и 12-лучевые антенные системы (табл.2). Необходимые фазы сигналов, подводимых к антенне, обеспечиваются устройствами формирования луча, приведенными в табл.1. Антенны имеют диапазон рабочих частот 3,2-3,7 ГГц, мощность до 20 Вт и вертикальную поляризацию.

Масштабируемые WiMAX-антенны с двойной поляризацией

Для сайтов с очень высокой абонентской емкостью компания ЕТІ разработала серию так называемых масштабируемых антенн^{**} с двойной (вертикальной и горизонтальной) поляризацией. Сочетание передовых технологий формирования лучей с применением двойной поляризации позволяет наиболее эффективно реализовать повторное использование частот. Масштабируемые антенны работают на наиболее распространенных частотах WiMAX-профилей в диапазоне до 11 ГГц.

Компания ETI выпускает ряд антенн с двойной поляризацией ETMAX Duo Pol Antenna (табл.3). В стандартной конфигурации антенны создают шесть лучей в 90-градусном секторе. Четыре таких сектора формируют круговую диаграмму направленности (рис.3). По запросу доступны варианты с 60-градусными секторами – до 12 лучей в каждом. Антенны работают с мощностью до 20 Вт, имеют коэффициент усиления 22 дБ, угол раскрыва по половинной мощности в Н-плоскости составляет 90°, в Е-плоскости – 5°,

КСВ равен 1,6. Углы максимумов излучения в лучах имеют значения ±7, ±22, ±38°, а ширина луча составляет 15°.

Масштабируемые антенные системы позволяют операторам и поставщикам услуг удовлетворять требованиям к емкости сети без установки новых антенн. Антенны могут обеспечить высокую пропускную способность, большую абонент-

скую мощность системы и увеличение эффективности использования спектра при минимальном количестве базовых станций. В результате повышается общая производительность сети при одновременном снижении капитальных и эксплуатационных затрат по сравнению с традиционными WiMAX-системами.

Таким образом, многолучевые антенны компании ЕТІ могут успешно применяться в сетях WiMAX и сотовой связи. Они позволяют существенно увеличить емкость и спектральную эффективность таких сетей за счет повторного использования частот.

ЛИТЕРАТУРА

- Desai J., Howard J. Multibeam Antenna Serves Broadband Wireless Coms. Microwaves and RF, June 2008. - mwrf.com/Articles/Index. cfm?Ad=1&ArticleID=19192
- 2. **Desai J., Howard J.** Multibeam Antenna System Using Passive Beamforming Networks For Broadband Wireless Communications. www. etiworld.com
- 3. Материалы сайта www.etiworld.com
- 4. **Greenwood K.** Understanding Passive Beamforming Networks. Sep 6, 2011 rfdesign.com/military_defense_electronics/understanding-passive-beamforming-networks-0911/index.html
- 5. **Howard J., Logothetis J., Wilson J.** Beamformers: Broadband RF Technology for Integrated Networks. Antennas and Propagation Society (APS) International Symposium, July 21-26, 1996, APS Digest, v.3, p.1632-1635.
- 6. **Wadell B.C.** Transmission Line Design Handbook. Artech House, Norwood, MA, 1991.
- 7. **Howard J., Lavey M.S.** Transmission Line Directional Couplers with a Generalized Sinusoidal Coupling Coefficient. Electronics Letters, 1995, v.31, Issue 24, p.2114-2115.
- 8. **Howard J.** Stripline Coupler Directs 2 to 40 GHz. Microwaves and RF, 1986, v.25, №5, p.119–125.

^{**} Масштабируемая антенна – антенна, поддерживающая несколько рабочих режимов, различающихся числом используемых антенных решеток и формируемых лучей, видами поляризации и др.